

ROOTKIT

International Cyber Security
Challenge

SEPT 2021

AUTHOR:

CYBEXER TECHNOLOGIES

ROOTKIT
Status | Version | Marking | Sept 2021

1

1. DESCRIPTION

A malicious dynamic link library is provided for investigation. Task is to identify its functionality.

2. CHALLENGE SPECIFICATIONS

 Categroty: Reverse Engineering

 Difficulty: Medium

 Estimated time: 15-30 min

3. QUESTIONS AND ANSWERS

3.1 WHICH PORTS ARE HIDDEN FROM NETSTAT OUTPUT?

60000

3.2 WHICH FILES ARE HIDDEN?

The ones that contain phrase “bucketz” in their name

3.3 IN WHAT CONDITIONS REVERSE SHELL IS LAUNCHED?

When a connection comes from port 34344

4. SETUP INSTRUCTIONS

The task does not require any setup.

ROOTKIT
Status | Version | Marking | Sept 2021

2

5. ARTIFACTS PROVIDED

File SHA-256

libc_lib.so.6 2f62cf44359ab8be2370ea694a38293393d3ecdf651114f1882b7fbe23734b73

6. TOOLS NEEDED

 Debugger, Disassembler, e.g., gdb, IDA, Ghidra, etc.

7. WALKTHROUGH

Running strings on library to search for some suspicious/interesting names is a good start of

reverse-engineering a binary file:

The output can already aid reversing and give out clues on what to look for. “bucketz” in a library

doesn’t seem a standard word. /bin/sh is definitely suspicious.

In case of a shared library, one of the first things to do, is always to find out, what functions it is

exporting. That gives a direct hint about the conditions when the library could come into action.

This can be done using nm, objdump, or a debugger, e.g. gdb. In this description the latter is

used.

ROOTKIT
Status | Version | Marking | Sept 2021

3

info functions command in gdb will print out all function names that are part of the library:

Some standard function names are seen, like readdir, accept, and fopen64, which is suspicious

– a library shouldn’t contain functions with well-known names. falsify_tcp suggests, that this

could be malicious as well. Since there are only a few names, going over them one by one isn’t

too hard.

Let’s pick readdir first:

The selected line on the above screenshot is the key – call to strstr, function. On lines

<+46>…<+61> pointer to a local variable in stack is loaded to register rdi, that will be first

argument to strstr, and a fixed string into rsi, that will be second argument. Since gdb calculates

the address of the fixed thing for us, it is easy to dump a couple of bytes from there as follows:

x/32c 7fffff7fc7008

ROOTKIT
Status | Version | Marking | Sept 2021

4

At line <+93> the result of original readdir is stored in the local variable, that %rdi points to. Thus

– the result of readdir is compared against a fixed string, bucketz. If there is a match, jump at line

<+72> is not taken and another call to original readdir is made. To recap as a pseudocode:

Address = dlsym(“readdir”)

Repeat

 Result = Call (Address, arguments)

 If Result != 0 and strstr(result, “bucketz”) == 0 then exit loop

Loop end

This code ignores all directory entries, that contain “bucketz” in their names:

In a similar manner we can inspect other functions and try to reverse instructions to see what is

really happening. Let’s pick accept:

The beginning seems similar to previous one. Original accept function is located using dlsym, and

then called (at line <+96>). Result from original accept() is moved from register eax into a local

variable. This is nothing suspicious. But on the next line a value from rbp-0x6e is moved into

register ebx, then a constant 0x8628 is moved into register edi (the selected line), and then htons

is called. According to Linux ABI, register edi is used to pass first parameter, thus the selected

line is htons(0x8628). This function does nothing more than convert the given value from host

byte order to network byte order. The 0x8628 in decimal would be 34344.

ROOTKIT
Status | Version | Marking | Sept 2021

5

On line <+116> the result of htons() is compared to the value in register ebx, that was loaded

couple of instructions earlier, and if there is a match, fork() is called – this spawns a new process!

Something that accept() is not supposed to do. The obvious question is, what is in the local

variable rbp-0x6e?

Closest address to it is at line <+81>: rbp-0x70, pointer to which is later moved to register rsi –

second argument to original accept(). According to manual, this is address information that would

be bound to the socket, of type struct sockaddr *. Meaning, that the interesting place is 2 bytes

after beginning of struct sockaddr. Some digging in manuals and /usr/include directory reveal,

that in case of IPv4, this will be the source port. To recap findings so far:

struct sockaddr a;

address = dlsym(“accept”)

call *address (arg1, &a, …)

if a.s_port == htons(34344) then fork()

Further actions are almost predictable - /bin/sh is exec()-d in the child process.

That leaves one more question – what does the fopen and fopen64 and falsify_tcp do? The

engineering process would be like the previous ones and is left out to keep the document shorter.

Jumping directly to results, it appears, that if the opened file happens to be /proc/net/tcp, then a

temporary file is created where all of its content is copied, except for lines containing a string

“:EA60”, and a pointer to the temporary file is returned instead of the requested one.

The format of /proc/net/tcp suggests that a string starting with colon can match port part of

“local_address” or “rem_address” and “EA60” is a hexadecimal number. A test with port number

can be easily done with nc once again - port 60000 is not visible in output of netstat.

Done.

ISBN xxx-xx-xxxx-xxx-x
doi:xx.xxxx/xxxxxx

TP-xx-xx-xxx-EN-C

ENISA
European Union Agency for Cybersecurity

Athens Office
1 Vasilissis Sofias Str.

151 24 Marousi, Attiki, Greece

Heraklion Office
95 Nikolaou Plastira

700 13 Vassilika Vouton, Heraklion, Greece

