

READ
EVERYTHING

International Cyber Security
Challenge

SEPT 2021

AUTHOR:

CYBEXER TECHNOLOGIES

READ EVERYTHING
Status | Version | Marking | Sept 2021

1

1. DESCRIPTION

It is common to exploit binaries by writing too much data into a fixed-size buffer. This is called a

buffer overflow. But there is one notorious example of a real-life attack that abused buffers in

slightly different way.

Connect to target with netcat or similar tool and try to exploit it. The binary is available for

inspection at target machine via HTTP on another port.

2. CHALLENGE SPECIFICATIONS

 Categroty: Binary exploitation

 Difficulty: Easy

 Estimated time: 5-10 min

3. QUESTIONS AND ANSWERS

3.1 WHAT FLAG IS PRINTED BY THE PROGRAM?

icsc{Sup3rdup3rfl@g}

4. SETUP INSTRUCTIONS

Dockerfile and docker-compose.yml are provided to run the task in a container. FLAG, PORT and

HTTPPORT can be given through docker-compose environment, see .env:

$ cat .env

FLAG="icsc{Sup3rdup3rfl@g}"

PORT=1342

HTTPPORT=8080

docker-compose build

docker-compose up

READ EVERYTHING
Status | Version | Marking | Sept 2021

2

FLAG is inserted to container at build time. It must be no longer than 32 bytes! Ports are

mapped at start-up. HTTPPORT is used only for serving the binary to participant for inspection,

PORT is where the binary is listening for input requests.

5. ARTIFACTS PROVIDED

File SHA-256

read-everything.tar.gz 5cba1a7c3fefd151c7844f3d061e9805692693a6fe143afea6a3556f1153fffe

6. TOOLS NEEDED

 A hex editor, debugger, disassembler, e.g., gdb, IDA, Ghidra, etc.

7. WALKTHROUGH

Start by identifying what file is provided to you:

$ file server

server: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV), dynamically linked, interpreter
/lib/ld-musl-x86_64.so.1, with debug_info, not stripped

A Linux binary, let’s try to run it:

$ chmod +x server

$./server

-bash: ./server: No such file or directory

Such message is indication of missing libraries or inappropriate binary format. We could have

noticed it already from output of “file”.

$ ldd server

linux-vdso.so.1 (0x00007ffe74df5000)

libc.musl-x86_64.so.1 => not found

READ EVERYTHING
Status | Version | Marking | Sept 2021

3

MUSL is an implementation of standard C library that is used in Linux distributions where small

footprint is important, e.g., BusyBox or Alpine. Fortunately, there is a package available in Ubuntu

and Kali:

$ sudo apt install musl

Retry:

$./server

How long password would you like to set? 10

Ok, please enter your 10-character password: asd

Retype for confirmation: asd

Saved.

Let's inspect the main() function with Ghidra:

The selected part shows the interaction that we saw. We can note that local_90 is where

expected length of the password is stored and local_38 and local_58 will contain the two typed

passwords. From variable definitions we can see that there is a buffer overflow because local_38

and local_58 are fixed-length buffers:

But the task description told us to look elsewhere, so let’s scroll down:

READ EVERYTHING
Status | Version | Marking | Sept 2021

4

Here the selected part compares the two entered passwords and prints them out if they don’t

match. They are both printed out using write(), with user-supplied length parameter. Since the

buffers are stored in local variables of main() function, and write() does not stop at null byte,

supplying a (very) long password length will print content of all local variables, followed by other

parts of memory. Is it helpful?

Seems so – after printing “Saved”, there is another code block:

This does:

 Acquire content of environment variable PASSWORD,

 Check that it is set and that there is one command-line argument given

 Check that first user-supplied password matches to environment variable

 If the checks pass, print out 32 bytes from a file that is indicated on command line.

To get lucky, we must check (and hope) that command line argument points to /flag.txt as

requested by task description, and leak value of PASSWORD from environment. Then the correct

password can be supplied in second run to get the flag. At first, we can try the idea in a debugger

with the local binary:

READ EVERYTHING
Status | Version | Marking | Sept 2021

5

As seen, we can leak the required values. But debugger disables ASLR, and we can’t expect

identical solution to work on the target machine. Let’s fuzz a bit:

In the green box we can see command-line arguments. We can assume that “/server” is name of

the executable (argv[0]) and “/flag.txt” is first argument (argv[1]), although it is not clearly visible

from the screenshot. Observing the result with hex editor could give more confidence, because

there terminating null bytes would be visible, but let’s not waste time on it.

In the red box we can see a candidate for our password. Let’s try:

Done. This is how the Heartbleed bug worked back in 2014.

8. REFERENCES

https://heartbleed.com

https://xkcd.com/1354/

ISBN xxx-xx-xxxx-xxx-x
doi:xx.xxxx/xxxxxx

TP-xx-xx-xxx-EN-C

ENISA
European Union Agency for Cybersecurity

Athens Office
1 Vasilissis Sofias Str.

151 24 Marousi, Attiki, Greece

Heraklion Office
95 Nikolaou Plastira

700 13 Vassilika Vouton, Heraklion, Greece

