
 

 

 

  

MAGIC KEYS 

 

International Cyber Security 
Challenge 

SEPT 2021 



MAGIC KEYS 
Status | Version | Marking | Sept 2021 

 
1 

 

1. DESCRIPTION 

There is a service listening on target host that can decrypt your messages. You can connect 

with socat or similar tool to it and use the text-based menu for operating it. The service is a 

custom piece of code, written in Python. Unfortunately implementing your own cryptography 

often ends up with buggy code that is easy to exploit, and result is complete loss of secrecy. 

Steal the keys! Source code of the service is available for your inspection over HTTP on the 

target machine. 

 

2. CHALLENGE SPECIFICATIONS 

 Categroty: Crypto 

 Difficulty: Medium 

 Estimated time: 30 min 

 

3. QUESTIONS AND ANSWERS 

3.1 SECRET KEYS 
1. randomstring1234 

2. 5678endofstring 

 

4. SETUP INSTRUCTIONS 

Dockerfile and docker-compose.yml are provided to run the task in a container. KEY1, KEY2, 

PORT, and HTTPPORT are passed from docker-compose environment, see .env. 

        docker-compose build 

        docker-compose up 

HTTP port is used to serve source of the script to contesters. PORT is where the service itself is 

listening. KEY1 and KEY2 must be exactly 16 bytes (128 bits). 

 



MAGIC KEYS 
Status | Version | Marking | Sept 2021 

 
2 

 

5. ARTIFACTS PROVIDED 

File SHA-256 

magic-keys.tar.gz 0f0f0d3d7d82701c3a4464ce5a2eb6bb68ee877cd52cede3d4fe6ce73d4ca878 

 

6. TOOLS NEEDED 

 socat, nc, or similar 

 scripting language 

 

7. WALKTHROUGH 

Start by inspecting the provided Pyhton script, and identify encryption properties: 

def decrypt_message(key, IV): 
... 

    cipher = AES.new(key, AES.MODE_CBC, IV) 
 
Down in the main function, call to the decrypt_message should catch eye: key is used as iv. 

        if choice == "1": 
            decrypt_message(key, key) 

 
To understand, whether exploitation is possible, and how to do it, a little background theory is 
necessary. Block ciphers are used to encrypt or decrypt one fixed-length block of data using the 
supplied secret key. For AES, the block size is 128 bits (16 bytes). The method for handling 
messages longer than one block, is called mode of operation. The simplest mode of operation 
is ECB, where the input is split into blocks, every block is encrypted independently, and the results 
are concatenated together: 

 



MAGIC KEYS 
Status | Version | Marking | Sept 2021 

 
3 

 

This approach has a problem, that since the ciphertext block depends only on the plaintext block 
and key, repeated plaintext blocks result in repeated ciphertexts, and this could reveal a great 
deal of information. To overcome this, several other modes of operation have been invented. One 
of the oldest and most widely used is CBC. Explanation of it from Wikipedia: 

In CBC mode, each block of plaintext is XORed with the previous ciphertext block before being 
encrypted. This way, each ciphertext block depends on all plaintext blocks processed up to that 
point. To make each message unique, an initialization vector must be used in the first block. 

 

Although relatively secure, this mode of operation has certain weakness against chosen-
ciphertext attack. The CBC mode decryption expressed in pseduocode would be: 

PlainBlock[1] = AES_Decrypt_Block (CipherBlock[1], Key) XOR IV 

PlainBlock[2] = AES_Decrypt_Block (CipherBlock[2], Key) XOR CipherBlock[1] 

… 

PlainBlock[n] = AES_Decrypt_Block (CipherBlock[n], Key) XOR CipherBlock[n-1] 

 

Knowing, that output of AES_Decrypt_Block depends only on input and key, we could modify the 
code a bit for cases, when two ciphertext blocks are identical: 

If CipherBlock[1] == CipherBlock[2] then 

Let Block = Aes_Decrypt_Block(CipherBlock[1], Key) 

PlainBlock[1] = Block XOR IV 

PlainBlock[2] = Block XOR CipherBlock[1] 

 

The XOR operation has a property, that a value XOR-ed to zero equals the value itself. This can 
be leveraged to better choose the ciphertext – namely two blocks of null bytes. That would mean: 

PlainBlock[2]   = Block XOR 0000000000000000  

= Block 

Another propery of XOR operation is that a value XOR-ed to itself is zero. This can lead to an 

interesting result, when PlainBlock[1] and PlainBlock[2] are XOR-ed together: 

PlainBlock[2] XOR PlainBlock[1]  = Block XOR Block XOR IV = 

= 0000000000000000 XOR IV = 

= IV 

Thus, by supplying two blocks of null bytes to CBC-mode block cipher decryption, we can retrieve 

the value of IV. This would not be a problem, if the IV is chosen randomly and never reused. 



MAGIC KEYS 
Status | Version | Marking | Sept 2021 

 
4 

 

However, this is not the case. Even worse, the IV is set equal to the key, that should be kept 

secret. 

Let’s try it in action against the server on port 1343: 

$ nc localhost 1343 
You have 2 keys to choose from 
=> 1 
1) Decrypt content 
2) Choose a different key 
3) Exit 
=> 1 
Hex data for decryption 
=> 0000000000000000000000000000000000000000000000000000000000000000 
98ef83848f49b919f1ceadbe3ae53f54ea8eede0e024ca6d83a7c3d90bd70c60 

 

The XOR-ing of plaintext halves can be done using a Python two-liner: 

$ python3 
Python 3.8.5 (default, Jul 28 2020, 12:59:40)  
[GCC 9.3.0] on linux 
Type "help", "copyright", "credits" or "license" for more information. 
>>> 
c=bytes.fromhex('98ef83848f49b919f1ceadbe3ae53f54ea8eede0e024ca6d83a7c3d90bd70c60') 
>>> "".join(chr(c[i]^c[i+16]) for i in range(16)) 
'randomstring1234' 
 

We can verify it also in Python: 

>>> from Crypto.Cipher import AES 
>>> AES.new('randomstring1234',AES.MODE_CBC,'randomstring1234').encrypt(c) 
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0
0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' 

Done! Ciphertext is all zeros, as expected. 

Second key can be recovered by repeating the steps. 

 

 



 

 

 

 

 

ISBN  xxx-xx-xxxx-xxx-x
doi:xx.xxxx/xxxxxx

TP-xx-xx-xxx-EN-C 

ENISA 
European Union Agency for Cybersecurity 

Athens Office 
1 Vasilissis Sofias Str. 

151 24 Marousi, Attiki, Greece 

Heraklion Office 
95 Nikolaou Plastira 

700 13 Vassilika Vouton, Heraklion, Greece 


