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[bookmark: _Toc117437504]Information regarding the challenge
[bookmark: _Toc117437505]Description of the challenge 
You have managed to acquire two encrypted messages and a plain text message, that corresponds to one of the encrypted messages.
[bookmark: _Toc117437506]Challenge specification
· Challenge Category: Crypto
· Difficulty: Easy
· Expected time to solve: 30m
[bookmark: _Toc117437507]Technical Specification
The challenge is made up of three files: a plaintext, corresponding ciphertext and another ciphertext
that contains the flag.

The challenge is static: the files are provided to contesters for analysis. A Python script is included
in the delivery package that can be used to generate different sets of inputs to use different flag for
every participant.

Required skills: knowledge of One-Time Pad algorithm and any scripting or programming language
to automate solving process.
[bookmark: _Toc117437508]Required infrastructure
No infrastructure is required to prepare the challenge. Solving can be done offline. You just need to let the included script generate all necessary files for contestants. More in 2.2 Installation Instructions.
[bookmark: _Toc117437509]Provided files
Figure 1: List of files
	File name
	Format
	Comment
	Checksum (SHA256)

	gen_task.py
	Python script
	Generator of challenge
	fcbd3818f4602bc2229ec821190720cbdad81e31b200a32f064646632996117c

	message.txt
	Plaintext file
	Message to secure
	6b051e65303fede9b28ef0a682f20c8831f7d959d5f106b3ec1982bcade990e0

	test.py
	Python script
	Author’s solver script
	580989517f64bee873a6f794363609385efd7fc83725d7f2f7e3b36d8b4a436e


[bookmark: _Toc117437510]Questions and Answers
[bookmark: _Toc117437511]Challenge-specific questions
· What encryption method was used?
· One-Time Pad
· Is it possible to solve the task without having access to or hints about content of any plaintexts?
· Not really.
[bookmark: _Toc117437512]Generic questions
· What operation is basis of One-time Pad?
· Exclusive OR
· How long is the encryption key?
· There is no encryption key, but the pad table must be at least as long as the message
· How to ensure confidentiality of encrypted messages?
· The pad table must be kept secret, and used only once
· What are the weaknesses of One-time Pad?
· Pad table is very long and must be distributed secretly, no integrity protection or verification mechanisms

[bookmark: _Toc117437513]Attack Scenario
[bookmark: _Toc117437514]Description of the scenario
Participants must recover plain text message from an encrypted file by recovering the pad table from given plaintext and corresponding ciphertext. Little fuzzing is necessary to recover the flag.
[bookmark: _Ref117436796][bookmark: _Ref117436809][bookmark: _Toc117437515]Installation Instructions
The delivery package includes Python script for generating set of files and random flag.
The script takes two or three command line arguments: name of plaintext file and output directory (mandatory) and number of datasets to generate (optional, default 1). If more than one dataset is requested, they will be put into separate subdirectories under the output directory.
Example:
	$ usage: gen_task.py [-h] [-n TASKS] -m FILE DIR
positional arguments:
  DIR Output directory
optional arguments:
  -h, --help show this help message and exit
  -n TASKS Number of tasks to create
  -m FILE File with plaintext
$ python3 gen_task.py -n 3 message.txt out
  flag for participant 1 : ECSC{2a24ed0587c4ad72f75c1cbc2ade151e1e06f0ac}
  flag for participant 2 : ECSC{7977ba7c90e79806b7f0755a963bf9eb63f7cbf0}
  flag for participant 3 : ECSC{5676ed723ba1c01419fc29d3f2eb25bc172618a1}
$ ls -1R out
out:
1
2
3

out/1:
mainfile.enc
message.txt
message.txt.enc

out/2:
mainfile.enc
message.txt
message.txt.enc
out/3:
mainfile.enc
message.txt
message.txt.enc



[bookmark: _Toc117437516]Tools needed for solving the challenge
Needed tools are:
· General Linux tools
· Scripting language
[bookmark: _Toc117437517]Walkthrough (Writeup)
The task is built to demonstrate principles of One-Time Pad. The contester is provided with two encrypted files and a plain text that corresponds to one of the encrypted messages. The basis of One-time Pad algorithm is applying a reversible function on each byte of the message and corresponding byte in a fixed table. This task is using the original version of algorithm as described by Frank Miller, where modular addition is used with modulus 256.
Since a plaintext and corresponding ciphertext are available, the table can be recovered easily. Then the main message can be decoded against the same table.
Unfortunately, the message is corrupted:
	$ python3 test.py -c message.txt.enc -p message.txt mainfile.enc | head
Insert required amount of spaces *here* to decrypt the message.
The flag is:
  T(òi«ËhÂÏøýÇJbæ¶1»ßoaæ¶1»ßoa



Note the message: it asks to insert correct amount of padding into the text to recover the flag. Since One-time Pad does not offer any integrity protection, there is no option to assure, that the message is not correct other than looking at it.
The only way to solve the task is to start adding data to the indicated place, one byte at a time, until something meaningful is displayed as the flag, or the pad table runs out.
An example solution is provided in the test.py script:
	with open(args.fname[0], 'rb') as f:
  msg = f.read()
  dec = [chr((a-b)%256) for a,b in zip(msg, padtable[:len(msg)])]
  print (''.join(dec))
  m = re.findall(r'(.*\*)(here)(.*)', ''.join(dec), re.S)
  l = len(m[0][0])
  for i in range(1,len(padtable)-l):
    dec = [chr((a-b)%256) for a,b in zip(msg[l:],padtable[l+i:l+i+len(msg)])]
    if dec[0:4] == ['h','e','r','e']:
      print("\n\nfound solution at offset",i,”:”)
      print(m[0][0]+''.join(dec))



This script brute-forces the message at word “here” until another place in the pad table is found where decryption result starts with “here”:

	$ python3 test.py -c message.txt.enc -p message.txt mainfile.enc
Insert required amount of spaces *here* to decrypt the message.
The flag is:
  T(òi«ËhÂÏøýÇJbæ¶1»ßoaμ0´¾`ë!PÓ¤²)K4
found solution at offset 1333 :

Insert required amount of spaces *here* to decrypt the message.
The flag is:
  ECSC{2a24ed0587c4ad72f75c1cbc2ade151e1e06f0ac}
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