

EMBEDDED CRYPTO

Author: CONSORTIUM

[Publish Date]
European Cyber Security Challenge

European Cyber Security Challenge title

 [Publish Date]

 TITLE | [Document subtitle]

1.Initial Write-Up

Description

An embedded device serves as an electronic bank teller. You’ve managed to get your hands on a dump of

the flash attached to it and the communication performed against the back-office.

Can you get the secret account number?

2. Challenge specifications

● Category: Network/Forensics/Cryptography

● Difficulty : Easy/Medium

● Estimated time: 2h – 3h

3.Questions and answers

What is the flag ?

CTF{1C6683F328F32D1016FA055C32F8917BD706F9A870600B515B9AAB5E801C84C5}

What is the string for SHA256SUM?

SHA256SUM over a random set of data

European Cyber Security Challenge title

 [Publish Date]

 TITLE | [Document subtitle]

4.Artefact hashes

FILES MD5 SHA256

capture.bin F82D45F16249707D46044477E8CF50F4
1551D5DBC06224298B2E4DB1B0E622482C
7D33B918C0861E7739DE635B2092FE

dump.bin 4814FFC8746EEAC485E20AEB7FFE35DC
A062506BDDD1B6BFEFD1FD1DD2BAF6AF1
3C4A069571F4F77B01F6982D75B8ABA

5.Tools needed

• Python3

• CTF CryptoTool (writen in Python) - https://github.com/karma9874/CTF-CryptoTool

• Wireshark

• AES crypto tools (OpenSSL, online, Python, etc.)

6.Walkthrough (writeup)

The challenge is based on a network capture file and a memory dump.

The capture file contains one encrypted (TLS) communication stream. The memory dump contains several

hints and required information for decrypting the stream and cipher.

Master keys for TLS decryption:

https://github.com/karma9874/CTF-CryptoTool

European Cyber Security Challenge title

 [Publish Date]

 TITLE | [Document subtitle]

Hints about the encryption used:

Information required for decryption:

After the decryption of tls stream will result an http stream with the following data:

<html>

 <head>

 </head>

 <body>

 <data>idi9cwo34xQ1621MbvwFAW9PqLXzgv9jKn2JyW7VACYlc3Rs61boVd7Wsjg6rBG2dkdttpv/
MkvPUpBBm3O9WGCod9EC</data>

 <index>199</index>

 <startwith>oAnBpIWRLGrmMNPnRCQLBA==/<startwith>

 </body>

</html>

We can easily determine that data and startwith is information base64 encoded.

We decode the base64 strings and get some binary ones.

Data:89d8bd730a37e31435eb6d4c6efc05016f4fa8b5f382ff632a7d89c96ed500262573746ceb56e855de

d6b2383aac11b676476db69bff324bcf5290419b73bd5860a877d102

Startwith:A009C1A485912C6AE630D3E744240B04

European Cyber Security Challenge title

 [Publish Date]

 TITLE | [Document subtitle]

From the memory dump we can see something which resembles to pbdkf2 parameters :

HMAC-SHA256, pass, salt, iterations.

Using Python (or online) we can derive the AES key used for encryption.

>>> key=hashlib.pbkdf2_hmac('sha256' ,b'eBkfuBqpXQcTarT',b'uhqylxbtfpijpgqiiyipplnlr',19723)

>>> binascii.hexlify(key)

Output: b'fb0b74c930b714282baba01046ca11b42f3faccb056e6e60c25113c5976a9a60'

Here is a trick, the memory contains the value for iterations in little endian format so 0b4d is 19723 and

not 2893 as this value would normally decode.

We now have the key, we have used startwith word in the html for the IV(should be clear for someone

who understands crypto), data contains the encrypted key.

We perform AES-CTR decryption (online or with Python) and get the flag.

7. References

https://cryptii.com/pipes/aes-encryption

https://docs.python.org/3/library/hashlib.html

https://www.base64decode.org/

https://www.comparitech.com/net-admin/decrypt-ssl-with-wireshark/

https://cryptii.com/pipes/aes-encryption
https://docs.python.org/3/library/hashlib.html
https://www.base64decode.org/
https://www.comparitech.com/net-admin/decrypt-ssl-with-wireshark/

